CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest.
نویسندگان
چکیده
* Greater fine-root production under elevated [CO2] may increase the input of carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over quickly in forested ecosystems. * Here, the effect of elevated [CO)] was assessed on root biomass and N inputs at several soil depths by combining a long-term minirhizotron dataset with continuous, root-specific measurements of root mass and [N]. The experiment was conducted in a CO(2)-enriched sweetgum (Liquidambar styraciflua) plantation. * CO2) enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production and standing crop were doubled under elevated [CO2]. Though fine-root turnover declined under elevated [CO2], fine-root mortality was also nearly doubled under CO2 enrichment. Over 9 yr, root mortality resulted in 681 g m(-2) of extra C and 9 g m(-2) of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. * Increased C and N input to the soil under CO2 enrichment, especially below 30 cm depth, might alter soil C storage and N mineralization. Future research should focus on quantifying root decomposition dynamics and C and N mineralization deeper in the soil.
منابع مشابه
ESTIMATES OF FACTORS DIRECTLY RELATED TO FINE ROOT LONGEVITY USING A HIERARCHICAL BAYESIAN MODEL by
Fine root longevity, measured using minirhizotrons, range from days to years (Hendrick & Pregitzer, 1992; Eissenstat et al., 2000). Although there are several hypotheses that relate to root tissue lifespan (Ryser, 1996), very few long-term studies have examined the factors that may be directly related to survivorship of individual roots. It is known that atmospheric CO2, which is the major gree...
متن کاملForest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle
Despite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO2 concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO2 (eCO2) and soil N availability on forest productivity and C allocation, we hypothesized that (1) trees maximize fitness by allocating N and C to maximize their net gr...
متن کاملResponses of a loblolly pine ecosystem to CO2 enrichment: a mo
(FACE) facilities represents a substantial advance in experimental technology for studying ecosystem responses to elevated CO2. A challenge arising from the application of this technology is the utilization of short-term FACE results for predicting long-term ecosystem responses. This modeling study was designed to explore interactions of various processes on ecosystem productivity at elevated C...
متن کاملNet Primary Productivity of a Co2-enriched Deciduous Forest and the Implications for Carbon Storage
A central question concerning the response of terrestrial ecosystems to a changing atmosphere is whether increased uptake of carbon in response to increasing atmospheric carbon dioxide concentration results in greater plant biomass and carbon storage or, alternatively, faster cycling of C through the ecosystem. Net primary productivity (NPP) of a closed-canopy Liquidambar styraciflua (sweetgum)...
متن کاملRoot length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest.
Root systems serve important roles in carbon (C) storage and resource acquisition required for the increased photosynthesis expected in CO2-enriched atmospheres. For these reasons, understanding the changes in size, distribution and tissue chemistry of roots is central to predicting the ability of forests to capture anthropogenic CO2. We sampled 8000 cm(3) soil monoliths in a pine forest expose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 179 3 شماره
صفحات -
تاریخ انتشار 2008